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Abstract

Root analysis is fundamental to understanding plant adap-
tation to environmental stresses and optimizing agricul-
tural productivity [2, 4]. Generalized training of founda-
tion models such as Segment Anything Model (SAM) 2.1
[6] fail to capture the unique challenges of root imagery.
We present RootSAM, a specialized adaptation of SAM2.1
that achieves 66% mean Intersection over Union (mIoU)
and 85% reduction in manual annotation time through a
novel two-stage fine-tuning strategy. This framework en-
ables effective adaptation of foundation models for plant
phenotyping and is expected to accelerate root research.

1. Introduction

Minirhizotron imaging enables non-destructive quantifica-
tion of root system depth and distribution in field-grown
crops [8]. Manual annotations of quantitative traits from
these images is notoriously laborious, limiting the scale of
phenotyping studies [2, 9]. Foundation models like Seg-
ment Anything Model (SAM) [3] and SAM2.1 [6] have
demonstrated remarkable zero-shot, promptable segmenta-
tion capabilities. However, their performance can degrade
in specialized domains, such as fine and low-contrast struc-
tures of plant roots against a complex soil background [7, 9].
We first show that the original SAM2.1 model cannot ef-
fectively segment root structures [1]. We then propose a
novel two-stage sequential fine-tuning approach that effi-
ciently adapts SAM2.1 for bridging this performance gap.
Our results show that fine-tuning is essential for effectively
applying foundation models to root segmentation. We fi-
nally produce RootSAM after the two stages of fine-tuning.

2. Materials and Methods

2.1. Dataset

Our dataset consists of 286 high-resolution color images of
plant roots acquired using a CID Bio-Science CI-600 [1]
in situ root imager. The device captures 360-degree scans
from within minirhizotron tubes inserted into the soil. The
resulting images present several challenges for automated
segmentation, including variable illumination, and low con-
trast between roots and soil [9]. We divide this dataset into
228, 28, and 30 for train, validation, and test set.

2.2. Model Fine-Tuning

We utilized the SAM2.1 model with a Hiera-Large back-
bone as our foundation model [6]. To prepare the model
for fine-tuning, we developed a prompt simulation strategy
to mimic realistic user behavior, where prompts can occur
anywhere in an object, not just its center [10]. Instead of
morphological erosion, for each root mask, we generated
positive (foreground) prompts by sampling points based on
a probability distribution derived from a Euclidean Distance
Transform [5]. This ensures the model is robustly trained
on varied prompt locations. The fine-tuning process was
then conducted in two stages, training only the decoder and
prompt encoder to mitigate catastrophic forgetting and pre-
vent overfitting. We focused exclusively on point-based
prompts.

1. Stage 1: Images were upscaled to 2560×2560 px from
their native resolution of 2550×2160 px, and then di-
vided into patches of 512×512 px. This stage tuned the
decoder to recognize root-specific traits and soil patterns
and reduce the influence of global relationships.

2. Stage 2: Images were upscaled to 2048×2048 px and
divided into patches of 1024×1024 px, used to refine the
model’s understanding of root system connectivity and
branching patterns.
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Figure 1. Qualitative comparison of segmentation performance.
The baseline SAM2.1 model (a) struggles with the specialized task
of root segmentation, such as incorrectly segmenting the soil back-
ground as root structures. After fine-tuning, RootSAM model (b)
accurately identifies the root area.

3. Results

Our two-stage fine-tuning approach demonstrates pro-
gressive improvement in root segmentation performance
across different scales. We evaluate the model exclu-
sively on 512×512 pixel patches (primary evaluation)
and 1024×1024 pixel patches (cross-scale validation) to
assess the framework’s ability to learn hierarchical features
without catastrophic forgetting. We present our results at
two levels of granularity to evaluate which resolution most
effectively supports our current annotation workflows for
generating additional training data.

Primary Evaluation (512×512 patches): RootSAM
achieves a mIoU of 66% and Dice Score of 77.2%,
significantly outperforming the baseline SAM2.1 model
(48.2% mIoU, 56.5% Dice Score) (Table 1). Training
baseline SAM2.1 on Stage 1 alone yields 65.3% mIoU,
demonstrating that our two-stage approach provides an
additional 1.1% improvement while maintaining robust
performance.

Cross-Scale Validation (1024×1024 patches): RootSAM
achieves 49.5% mIoU on larger patches (Table 1), substan-
tially outperforming the baseline SAM2.1 which achieves
only 16.3% mIoU, a remarkable 204% improvement.
Baseline SAM2.1 with Stage 1 training alone achieves

Table 1. Performance comparison demonstrating progressive im-
provement through our two-stage strategy.

Model Configuration mIoU Dice Score mAP

Primary Evaluation
SAM2.1 (Baseline) 0.482 0.565 0.636
SAM2.1 (Stage 1) 0.653 0.764 0.803
RootSAM (Stage 1 + Stage 2) 0.660 0.772 0.811

Cross-Scale Validation
SAM2.1 (Baseline) 0.163 0.211 0.226
SAM2.1 (Stage 1) 0.474 0.619 0.654
RootSAM (Stage 1 + Stage 2) 0.495 0.639 0.667

47.4% mIoU on larger patches, while our complete
two-stage approach improves performance by 4.4% from
Stage 1, therefore the full model demonstrates that it now
incorporates global context learning without forgetting the
fine-grained features learned in Stage 1.

Cross-scale validation provides a relevant contribution to
fine root detection, where contextual information helps
resolve ambiguities between roots and organic debris while
maintaining the ability to capture intricate root structures.
This progressive learning framework ensures that the model
enhances its capabilities across scales rather than simply
trading off between fine-grained and global understanding.

The model demonstrates robust performance, despite the
constraints imposed by fine-tuning on a limited dataset.
In comparison, other fully automated CNNs have reported
lower scores even on images from more controlled environ-
ments [9]. This demonstrates the effectiveness of our fine-
tuning strategy in upgrading a foundational model for plant
root segmentation.

4. Conclusion and Future Work

We have presented a framework for efficiently fine-tuning
the SAM2.1 model for root segmentation using minirhi-
zotron imagery. Our two-stage sequential fine-tuning strat-
egy enables the rapid development of a specialized segmen-
tation tool with minimal initial manual labeling. The result-
ing model achieves a mIoU of 66% on 512×512 patches,
which can now be used to facilitate and accelerate our cur-
rent root tracing workflows. This performance level pro-
vides immediate practical value for high-throughput phe-
notyping applications. While our end goal is to develop a
model capable of segmenting even fine roots directly from
native resolution CI-600 images, the current framework es-
tablishes a strong foundation for building more automated
root phenotyping pipelines by significantly reducing human
annotation effort.



References
[1] CID Bio-Science, Inc. CI-600 In-Situ Root Imager. https:

//cid-inc.com/plant-science-tools/leaf-
area-measurement/ci-600-in-situ-root-
imager/, 2024. Accessed: 2024-10-27. 1
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Klimešová, Marcin Zadworny, Hendrik Poorter, Johannes A.
Postma, Thomas S. Adams, Agnieszka Bagniewska-
Zadworna, A. Glyn Bengough, Elison B. Blancaflor, Ivano
Brunner, Johannes H. C. Cornelissen, Eric Garnier, Arthur
Gessler, Sarah E. Hobbie, Ina C. Meier, Liesje Mom-
mer, Catherine Picon-Cochard, Laura Rose, Peter Ryser,
Michael Scherer-Lorenzen, Nadejda A. Soudzilovskaia,
Alexia Stokes, Tao Sun, Oscar J. Valverde-Barrantes,
Monique Weemstra, Alexandra Weigelt, Nina Wurzburger,
Larry M. York, Sarah A. Batterman, Moemy Gomes de
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