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(a) (d) (c) (b) Figure 1. Our neural parametric model for leaves, NeuraLeaf, represents shapes of various leaf species and natural 3D deformation.
Our model represents the leaves’ flattened shape and their 3D deformation in disentangled latent spaces (left). Our method enables the
instance-wise reconstruction of leaves via fitting to real-world observations, besides pure CG modeling (right).

1. Introduction
3D leaf reconstruction is important as it provides insights
into plant growth in agricultural applications and is essential
for creating virtual computer graphics (CG) assets. Para-
metric 3D models have been built on plant leaves [1, 2]. Al-
though for modeling static leaves, some methods take bio-
inspired approaches [12, 14] using venation patterns or the
nature of flattened shapes.

However, the requirement of large datasets poses chal-
lenges for leaf modeling due to the lack of a 3D dataset
containing leaves’ deformations.

To these issues, we integrate leaves’ bio-inspired insights
with a data-driven framework. We propose a leaf-specific
NPM representation, NeuraLeaf, leveraging the nature of
leaves, i.e., the flattened leaves can be approximated as a
plane. As illustrated in Fig. 1, we disentangle the leaves’
3D geometry into their 2D base (i.e., flattened) shape and
3D deformation represented by different latent codes. 2D
base shapes can be learned from 2D-scanned image datasets
of leaves and for the 3D deformation modeling, we newly
construct a dataset, DeformLeaf, by acquiring real-world
3D leaf shapes in natural deformation.

Beyond data limitations, leaf deformation also presents
challenges due to its high flexibility, and shape variance
across species further complicates defining a common
skeleton structure, making conventional skinned vertex-
based models [3, 8, 9, 11, 13, 15–17] unsuitable. We, there-

fore, newly introduce a skeleton-free skinning model that
learns a parametric space for skinning parameters.

We showcase applications of our NeuraLeaf for recon-
struction and modeling purposes, where our method enables
the leaf-wise reconstruction from the observation as shown
in Fig. 1.

2. NeuraLeaf: Neural Parametric Leaf Model
The overview of our disentangled representations and train-
ing strategy is illustrated in Fig. 2. We first represent the
base leaf shapes in a flattened state using a neural SDF con-
ditioned by latent codes, which are learned from a large-
scale 2D dataset [5]. The base shape and texture spaces are
modeled by a shape decoder fθs and texture generator fθt
conditioned on shape & texture latent codes {zs, zt}. We
then convert the SDF into a mask in a differentiable man-
ner.

Based on the learned shape space, we then train two de-
formation decoders to predict skinning parameters, called
skinning weight decoder fθw and transformation decoder
fθd , which infer skinning weight of each point and transfor-
mation of each control point. We use linear blend skinning
(LBS) [7] to deform the points. We learn the deformation
space from our DeformLeaf dataset containing natural de-
formation.

In the inference stage, to obtain a reasonable initializa-
tion of latent codes, we use an inversion-based approach
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Figure 2. Overview of NeuraLeaf.
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Figure 3. Visual comparisons of reconstructed leaf samples. We compare the ground truth with predicted shapes. Our method shows
accurate reconstruction compared to baseline methods and has significantly more surface detail, such as leaf veins.

Table 1. Quantitative comparison between baselines on the test
set of DeformLeaf dataset for single leaf reconstruction. The best
result is highlighted in bold.

Method C-ℓ2 [mm] ↓ NC ↑ Corres-free Temp-free Inf. time [s]
PCA [2] 32.7 0.924 × × 157
B-spline [6] 26.7 0.957

√ √
18

NPM [10] 15.1 0.961 ×
√

73
NeuraLeaf (ours) 2.1 0.973

√ √
55

inspired by [4] to learn the mapping between input observa-
tion and the latent codes.

3. Experiments
Table 1 shows a quantitative comparison on fitting to real-
world single-view partial leaf point clouds, along with a vi-
sual comparison shown in Fig. 3. According to the results,
our NeuraLeaf outperforms the baseline methods, achiev-
ing higher normal consistency and also reducing chamfer
distance.

For multiple leaves cases that contain occlusions, we use

top-view RGB-D observations with segmentation masks
and obtain point clouds corresponding to each leaf instance.
Figure 1 presents a visual example of fitting multiple leaf
instances to RGB-D observation. The leaf-wise reconstruc-
tion results highlight that, by sharing similar shape latent
zs, our method reasonably recovers leaf-wise shapes even
in the portions occluded in the input RGB-D image.

4. Conclusions

This paper has presented NeuraLeaf, a novel leaf-specific
NPM that faithfully captures the unique characteristics of
leaf geometry. Our method effectively disentangles a leaf’s
3D structure into a 2D base shape and 3D deformation,
each represented by a distinct latent code. By using large
2D-scanned image datasets and our newly acquired De-
formLeaf dataset, NeuraLeaf learns from limited data while
managing the flexibility inherent in leaf morphology.
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Federl, Anne-Gaëlle Rolland-Lagan, and Przemyslaw
Prusinkiewicz. Modeling and visualization of leaf venation
patterns. ACM Transactions on Graphics (TOG), 24(3):702–
711, 2005. 1

[13] Shubham Tulsiani, Nilesh Kulkarni, and Abhinav Gupta. Im-
plicit mesh reconstruction from unannotated image collec-
tions. arXiv preprint arXiv:2007.08504, 2020. 1

[14] Weiliang Wen, Baojun Li, Bao-jun Li, and Xinyu Guo. A
leaf modeling and multi-scale remeshing method for visual
computation via hierarchical parametric vein and margin rep-
resentation. Frontiers in Plant Science, 9(783), 2018. 1

[15] Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rup-
precht, and Andrea Vedaldi. MagicPony: Learning articu-
lated 3D animals in the wild. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 1

[16] Yuefan Wu, Zeyuan Chen, Shaowei Liu, Zhongzheng Ren,
and Shenlong Wang. CASA: Category-agnostic skeletal ani-
mal reconstruction. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

[17] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael
Rubinstein, Ming-Hsuan Yang, and Varun Jampani. Hi-
lassie: High-fidelity articulated shape and skeleton discovery
from sparse image ensemble. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 1


	Introduction
	NeuraLeaf: Neural Parametric Leaf Model
	Experiments
	Conclusions

