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Abstract

Traditional manual extraction of quantitative traits from
minirhizotron imagery remains a major bottleneck in plant
science. In this work, we introduce SPROUTS (Smart
Phenotyping of Roots: Optimized User-friendly Tools), a
standalone, cross-platform desktop application that stream-
lines the root phenotyping pipeline. SPROUTS integrates a
human-in-the-loop workflow that supports interactive vali-
dation and correction with two novel end-to-end deep learn-
ing models for root traits: Pix2PixRoot for generative root
skeletonization and RootSeg-ResNet for area segmentation.
It also provides practical visualization interfaces for root
trait insights tailored for biologists. SPROUTS illustrates
how combining specialized models into an easy-to-use tool
can democratize plant phenotyping and support FAIR prin-
ciples.

1 Introduction

The quantitative analysis of root systems is fundamen-
tal to advancing crop genetics and understanding plant-
environment interactions [2]. Minirhizotron imagery pro-
vides a non-destructive method for observing root system
depth and distribution in the field. However, extracting traits
from the resulting imagery is notoriously slow and labor-
intensive, limiting high-throughput analysis of root systems
[1]. Currently, there is a trade-off between analytical ca-
pability and accessibility among the available landscape of
computational tools. Accessible open-source desktop ap-
plications are widely adopted but are typically based on tra-
ditional image processing [5] or involve a two-step process
[7], which tend to be prone to noise from complex soil back-
ground [6]. This forces a choice between cutting-edge mod-
els that may require complex setups and user-friendly tools
that may lack analytical accuracy. We introduce SPROUTS
to bridge this gap: a standalone desktop application that in-
tegrates novel deep learning models with a full suite of in-
teractive tools for biologists.

2 Materials and Methods

2.1 General Description

SPROUTS features a built-in data visualization dashboard
powered by Plotly/Dash. The application successfully inte-
grates a complex computer vision pipeline into a simple and
responsive desktop application. The interactive interface al-
lows for the rapid correction of segmentation outputs, root
trait generation, and visualization, turning a multi-software,
multi-day task into a streamlined process that can be com-
pleted in a single session. The visualizations provide im-
mediate biological context to the quantitative data, enabling
researchers to identify trends and outliers without exporting
data to external statistical software. The system’s efficiency
is a key result; on a standard consumer laptop equipped
with an NVIDIA GTX 1660Ti GPU, SPROUTS can pro-
cess 60,000 minirhizotron images for root area in under two
hours. This throughput refers to fully automatic batch infer-
ence (no HIL); SPROUTS also provides a Review mode for
optional human-in-the-loop correction and dataset curation,
but models remain frozen during inference and user edits
are exported for offline fine-tuning.

2.2 Human-in-the-Loop Correction, Annota-
tion and Visualization

A central feature of SPROUTS is its human-in-the-loop
workflow. The application includes a specialized annota-
tion module (Fig. 1, top) where users can instantly visu-
alize model-generated masks and make precise edits using
intuitive paint-style tools (brush, eraser, fill). This serves
two critical functions: (1) to ensure that the final data for
any given study are of the highest human-verified quality,
and (2) to facilitate the rapid creation of high-quality cu-
rated ground-truth datasets for training or fine-tuning future
models.

2.3 Root Traits Prediction

The analytical core of SPROUTS features two custom-
trained deep learning models, each optimized for a spe-
cific phenotyping task and engineered to run efficiently on



consumer-grade GPUs:

* RootSeg-ResNet: For determining root area, we de-
signed a segmentation model using a ResNet-18 back-
bone [3]. The architecture is augmented with a spatial at-
tention mechanism to focus on relevant root features (Fig.
1, top), with 72.46 mloU; area prediction R?=0.912,
MAE = 2.44 mm?.

¢ Pix2PixRoot: For determining root length, we developed
a conditional Generative Adversarial Network (cGAN)
based on the Pix2Pix framework [4]. This model excels
at the image-to-image translation task of converting a raw
root image directly into a clean, one-pixel-wide skeleton,
from which length is calculated (Fig. 1, bottom), achiev-
ing R?=0.89, F1@2px (£2-pixel tolerance) = 79.

Figure 1. The SPROUTS interface showing (top) RootSeg-ResNet
mask overlaid with refinement tools, and (bottom) Pix2PixRoot-
predicted root skeleton overlaid on the root images for inference
and sanity-checks

2.4 Integrated Visualization of Insights

This module allows researchers to perform immediate, in-
teractive exploratory analysis on the data they have just pro-
cessed and verified. Users can dynamically generate plots
of root growth over time, compare development across dif-
ferent genotypes, and visualize trait distributions by soil
depth (Fig. 2), significantly accelerating biological hypoth-
esis testing.
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Figure 2. Top: Stacked bar visualization showing cumulative root
length by tube and measurement date, with colored segments indi-
cating growth contributions from each measurement period. This
enables quick identification of high-performing tubes and assess-
ment of overall field productivity. Bottom: Spatial root growth
distribution within a single tube across multiple measurement
dates, showing root density profiles along the tube length over time
to reveal spatial colonization patterns. Together, these visualiza-
tions form a multi-granularity suite for temporal growth compari-
son, field-wide productivity assessment, and spatial-temporal root
development analysis.

3 Conclusion

We introduce SPROUTS, a standalone desktop application
that provides an end-to-end solution that integrates robust
deep learning models into an accessible end-user interface,
streamlining access to root phenotyping tools. By combin-
ing specialized models for segmentation and skeletoniza-
tion with human-in-the-loop correction and integrated vi-
sualization, SPROUTS delivers a seamless, robust work-
flow. It reduces the technical and financial barriers to
high-throughput phenotyping. Future work will expand
the model library to cover additional root traits and en-
able users to share and deploy custom fine-tuned models
within the SPROUTS ecosystem. Additionally, incorpo-
rating pre-planting field plot mapping data that documents
genotype distribution across experimental plots will enable
spatially-aware, genotype-specific root phenotyping analy-
sis with enhanced visualization capabilities at both plot and
field scales. A public GitHub release is planned by February
2026, pending institutional approvals.
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